Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Current Traditional Medicine ; 9(3):28-43, 2023.
Article in English | EMBASE | ID: covidwho-2267482

ABSTRACT

The mass casualties caused by the delta variant and the wave of the newer "Omicron" variant of SARS-COV-2 in India have brought about great concern among healthcare officials. The government and healthcare agencies are seeking effective strategies to counter the pandemic. The application of nanotechnology and repurposing of drugs are reported as promising approaches in the management of COVID-19 disease. It has also immensely boomed the search for productive, re-liable, cost-effective, and bio-assimilable alternative solutions. Since ancient times, the traditional-ly employed Ayurvedic bhasmas have been used for diverse infectious diseases, which are now employed as nanomedicine that could be applied for managing COVID-19-related health anomalies. Like currently engineered metal nanoparticles (NPs), the bhasma nanoparticles (BNPs) are also packed with unique physicochemical properties, including multi-elemental nanocrystalline compo-sition, size, shape, dissolution, surface charge, hydrophobicity, and multi-pathway regulatory as well as modulatory effects. Because of these conformational and configurational-based physico-chemical advantages, Bhasma NPs may have promising potential to manage the COVID-19 pandemic and reduce the incidence of pneumonia-like common lung infections in children as well as age-related inflammatory diseases via immunomodulatory, anti-inflammatory, antiviral, and adju-vant-related properties.Copyright © 2023 Bentham Science Publishers.

2.
Journal of Hazardous Materials ; 441, 2023.
Article in English | Scopus | ID: covidwho-2239696

ABSTRACT

This study explored the degradation behavior of three types of disposable face masks in simulated seawater via the accelerated aging experiments. Microplastics (MPs) and dissolved organic carbon (DOC) were monitored in UV- and thermal-treated mask suspensions and their concentrations increased slowly in the early stage at 50 ℃ and 58 ℃. Owing to the high energy supply, the release rates of MPs and DOC at 76 ℃ were much faster than the above two temperatures. The time-temperature superposition principle (TTSP) was used to superpose the MPs/DOC release kinetics from other tested temperatures to the reference temperature and its applicability was verified by the similar activation energy. Then, a release kinetics model was established and fitted well with the superposed MP data (R2 ≥ 0.96). Since less than 0.1 % of carbon was leached, the superposed DOC data was roughly modelled by the exponential function (R2 ≥ 0.90). According to the TTSP and the established kinetics models, about 15 years were estimated to decompose half of a certain marine mask waste, together with leaching 0.21 ± 0.02 mg∙g-mask−1 of DOC. If mask consumption remains the same before 2025, they would contribute 40000–230000 tonnes of MPs and 13–97 tonnes of DOC to the ocean by 2040. © 2022

3.
Yakugaku Zasshi ; 142(8): 867-874, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1968825

ABSTRACT

Particular batches of Moderna mRNA Coronavirus Disease 2019 (COVID-19) vaccine were recalled after foreign particles were found in some vaccine vials at the vaccination site in Japan in August 2021. We investigated the foreign particles at the request of the Ministry of Health, Labour and Welfare. Energy dispersive X-ray spectroscopy analysis suggested that the foreign particles found in the vials recalled from the vaccination sites were from stainless steel SUS 316L, which was in line with the findings of the root cause investigation by the manufacturer. The sizes of the observed particles ranged from <50 µm to 548 µm in the major axis. Similar foreign particles were also detected in 2 of the 5 vaccine vials of the same lot stored by the manufacturer, indicating that the foreign particles have already been administered to some people via vaccine. Observation of the vials of the same lot by digital microscope found smaller particles those were not detected by visual inspection, suggesting that more vials were affected. Contrarily, visual inspection and subvisible particulate matter test indicated no foreign particles in the vials of normal lots. Possible root cause and strategies to prevent such a deviation were discussed from technical and regulatory aspects.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Japan/epidemiology , Particulate Matter
4.
Science ; 373(6551):175.18-177, 2021.
Article in English | EMBASE | ID: covidwho-1666350
SELECTION OF CITATIONS
SEARCH DETAIL